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For many experiments in macromolecular crystallography, the

overall structure of the protein/nucleic acid is already known

and the aim of the experiment is to determine the effect a

chemical or physical perturbation/activation has on the

structure of the molecule. In a typical experiment, an

experimenter will collect a data set from a crystal in the

unperturbed state, perform the perturbation (i.e. soaking a

ligand into the crystal or activating the sample with light) and

finally collect a data set from the perturbed crystal. In many

cases the perturbation fails to activate all molecules, so that

the crystal contains a mix of molecules in the activated and

native states. In these cases, it has become common practice to

calculate a data set corresponding to a hypothetical fully

activated crystal by linear extrapolation of structure-factor

amplitudes. These extrapolated data sets often aid greatly in

the interpretation of electron-density maps. However, the

extrapolation of structure-factor amplitudes is based on a

mathematical shortcut that treats structure factors as scalars,

not vectors. Here, a full derivation is provided of the error

introduced by this approximation and it is determined how

this error scales with key experimental parameters. The

perhaps surprising result of this analysis is that for most

structural changes encountered in protein crystals, the error

introduced by the scalar approximation is very small. As a

result, the extrapolation procedure is largely limited by the

propagation of experimental uncertainties of individual

structure-factor amplitudes. Ultimately, propagation of these

uncertainties leads to a reduction in the effective resolution of

the extrapolated data set. The program XTRA, which

implements SASFE (scalar approximation to structure-factor

extrapolation), performs error-propagation calculations and

determines the effective resolution of the extrapolated data

set, is further introduced.
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1. Introduction

For a growing number of crystallographic studies, the goal is

not the determination of a new crystal structure. Instead, the

goal is to understand how a known structure responds to a

chemical or physical stimulus; for example, the binding of a

small molecule, exposure to light or changes in pH, redox

potential etc. A combination of technical and basic physical

factors often limits the efficiency of the perturbation and only

a fraction of the unit cells in a crystal respond to the stimulus.

The experimenter then obtains pairs of data sets where the

first data set corresponds to a crystal with 100% of unit cells in

their ‘native’ state A and the second data set from a crystal

containing a mix of unit cells, some remaining in state A and

some in the ‘perturbed’ state B. While difference electron-



density maps calculated from such pairs of data sets provide

useful information, model building often benefits greatly from

a data set corresponding to a fully activated crystal (i.e. a

crystal in which all molecules are in state B).

1.1. Vectorial versus scalar extrapolation of structure factors

Given experimental structure-factor amplitudes |FA| from a

‘native’ crystal and |FAB| from a crystal containing a mix of

unit cells in state A and B, can one not simply determine the

structure-factor amplitudes for a fully activated crystal |FB|

from linear extrapolation of these amplitudes? Strictly

speaking, the answer is ‘no’. Structure factors are vector

quantities. In the polar-coordinate representation, structure

factors have two components: the structure-factor amplitude

|F | and the phase ’. Unless both amplitudes and phases are

known (and the phases for the partially activated state are

usually not known), proper vector extrapolation is not

possible.

To bypass this problem, Genick et al. (1997) proposed |FBex|

as an approximation of |FB|, where |FBex| for each structure

factor is obtained by simple linear extrapolation of the

structure-factor amplitudes |FB| and |FAB|,

jFBexj ¼ ðjFABj � jFAjÞ �
1

f
þ jFAj: ð1Þ

This equation uses only |FA| and |FAB|, which are observed

experimentally, and f, which is the fraction of unit cells that

adopt state B in the partially activated crystal (i.e. the crystal

that gave rise to |FAB|). The value of f can often be obtained

from spectroscopic measurements of the crystal or from the

height of electron-density peaks in FA and FAB � FA maps.

Despite its apparent heavy-handedness, the approximation

indicated in (1), which I refer to as SASFE (scalar approx-

imation to structure-factor extrapolation), has proven to be

remarkably successful and popular (for examples, see Genick

et al., 1997; Edman et al., 1999, 2002; Cao et al., 1998; Lanyi &

Schobert, 2007).

Here, I report a systematic analysis of the error introduced

by SASFE and how this error compares with other types of

errors commonly encountered (and tolerated) in protein

crystallography. I also analyze the effect of experimental

errors on the final extrapolated data set and present the

program XTRA that implements the structure-factor extra-

polation, error propagation and statistical analysis of the

extrapolation results in a stand-alone program.

1.2. Requirements for the distribution of activated molecules
within the crystal

Before launching into an analysis of the extrapolation

procedure, it is important to point out that the proposed

treatment assumes that molecules in state A and B are

distributed throughout the crystal such that photons scattered

by molecules in both states interfere in the formation of the

diffraction pattern. If, instead, the crystal were to consist of a

small number of large domains, some containing only mole-

cules in form A and others containing only molecules in form

B, such that photons diffracted from the respective domains

did not interfere, then the proper extrapolation would be the

scalar extrapolation of scattered intensities (i.e. |F |2). In

practice, in-crystal activation experiments on protein crystals

generally appear to generate the former scenario, so that the

treatment outlined below will be applicable.

2. Source and magnitude of the error introduced by
SASFE

In this section, I discuss the origin of the error introduced by

SASFE and how this error depends on the size of the struc-

tural change between state A and state B and on the fraction

of molecules converted from state A to state B.

In order to understand the source of the SASFE error, it is

useful to recall how the position of individual atoms affects a

given structure factor. The radiation scattered by an individual

atom can be described as a wave with a characteristic ampli-

tude and phase. The amplitude depends on the atom’s number

of electrons and the phase depends on the atom’s position

relative to all other atoms. The molecular structure factor is

simply the sum of those individual waves. This addition of

waves can be represented in an Argand diagram, in which

each scattered wave is represented as a vector in the complex

plane and the wave sum is calculated as the vector sum of the
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Figure 1
Graphical comparison of SASFE to the the proper vector extrapolation
of a structure factor. The example is for the case of a crystal where FAB

corresponds to an activation of 50% of unit cells (i.e. f = 0.5). Therefore,
F� � f = F� � (1 � f) and |FA| � |FBex| = 2 � |FA| � |FAB|. Vector
extrapolation is shown at the top and the scalar approximation at the
bottom. The lengths of the bars representing the amplitude of the
structure factors are identical in the top and bottom half of the figure.



individual atomic wavevectors. If some of the atoms move, the

phases of their atomic scattering vectors change and as a result

the molecular structure factor changes. This change can be

described as a difference vector. If the difference vector that

corresponds to the perturbation of a given fraction f of a

crystal’s unit cells is known, then the difference vector F�

corresponding to the full conversion can be calculated by

multiplying this difference vector by 1/f.

Fig. 1 shows a graphical comparison of a proper vector-

based structure-factor extrapolation and SASFE. From the

diagram, it is clear that for �’ = 0 (�’ is the difference in

phase between FA and F�) SASFE is identical to the proper

vector-based extrapolation and the error (|FB| � |FBex|) is

therefore zero. When �’ = 180� the error is also zero, as long

as FA > F�. However, if FAB < FA < F�, �’ = 180� results in a

negative FBex and the error is maximal.

To better illustrate the magnitude and behavior of the error,

Fig. 2 shows |FAB|, |FBex|, |FB| and |FB| � |FBex| as a function of

�’ for two relative magnitudes of FA and F�. Given the

heavy-handedness of the assumption underlying SASFE, the

error is surprisingly small. It is also notable that SASFE

systematically underestimates structure-factor amplitudes (i.e.

|FB| � |FBex| for all �’).

Figs. 3(a) and 3(b) show how this error (averaged over �’)

varies as a function of the fraction of activated molecules f and

the size of the structural change |F�|/|FA|.

2.1. Treating |FA| and |FD| as distributions amplifies the
SASFE error

For any real-world example, the |FA| and |F�| values do not

adopt fixed values but distributions. In other words, for a given

average size of |FA| and |F�| we will find combinations of large

|FA| with small |F�|, small |FA| with large |F�| etc. How does

this affect the expected error for given average values of |F�|

and |FA|?

The calculation of |FBex| for any reflection with a given

Miller index (hkl) involves only the |FA| and |F�| with the same

Miller index, i.e. the scattering angle is the same. So any

scattering angle-dependent effects can be ignored. This

simplifies our considerations and structure factors can be

treated in their unitary form. I also focus solely on acentric

reflections. The reason for this is simple, with phase angles

restricted to 0 and � the SASFE of centric reflections is (at

least in the vast majority of cases) identical to the proper

vector extrapolation. For acentric reflections, it can be shown

(Giacovazzo et al., 2002) that the distribution of unitary

structure-factor amplitudes mirrors

PðjEjÞ ¼ 2jEj expð�jEj2Þ: ð2Þ

This function approaches zero for |E| > 3h|E|i, where it is

customarily truncated. By scaling |FA| and |F�| by the root-
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Figure 2
Error introduced by the scalar approximation as a function of the angle �’ and the relative sizes of |FA| and |F�| (F� = FB � FA). The fraction of unit
cells in state B is assumed to be 50% (i.e. f = 0.5). The nomenclature is identical to that used in Fig. 1. (a) and (b) correspond to |FA| = |F�| and (c) and (d)
correspond to |FA| = 5 � |F�|, with |F�| = 2 in both cases. (a) and (c) show |FAB|, the true structure-factor amplitude |FB| and the extrapolated amplitude
|FBex|. (b) and (d) show the error (i.e. |FB| � |FBex|) generated by the scalar approximation. Note the differences in vertical scale.



mean-square amplitudes of their distributions, we can then

calculate the probability distribution of |FA| and |F�| values

PðjFAjÞ ¼ 2
jFAj

r:m:s:ðFAÞ
exp �

jFAj

r:m:s:ðFAÞ

� �2
( )

ð3Þ

and

PðjF�jÞ ¼ 2
jF�j

r:m:s:ðF�Þ
exp �

jF�j

r:m:s:ðF�Þ

� �2
( )

: ð4Þ

To obtain the average error caused by performing SASFE on

these distributions of structure factors, one then needs to

consider all possible permutations of |FA| and |F�| values,

calculate the SASFE errors corresponding to each permuta-

tion and weight these errors for the relative probability of

finding that combination of |FA| and |F�|. The results of this

calculation are shown in Fig. 3(c). For |F�|/|FA|, the treatment

of |F�| and |FA| as distributions moderately increases the

average SASFE error. This effect can be understood by

considering the graph in Fig. 3(b). This graph indicates that the

SASFE error is disproportionately large when |F�| ’ 2|FA|.

While it is unlikely that the average |F�| will ever approach

twice the size of |FA|, variations in |FA| and |F�| within their

respective distributions will occasionally result in combina-

tions of |FA| and |F�| values such that |F�| ’ 2|FA| and these

combinations boost the average error.

When plotted as a function of hF�i (see Fig. 3c), the

distribution-corrected SASFE error adopts a simple mono-

tonic curve. For hF�i/hFAi � 0.4, calculated curves of the

average error approximate a simple quadratic function

h|FB| � |FBex|i = khF�i
2/hFAi. From Fig. 3(a) we know that

h|FB| � |FBex|i is also linearly proportional to 1 � f, so we

expect h|FB| � |FBex|i = (1 � f)k0hF�i
2/hFAi. The optimal value

of k0 was determined by least-squares fits of numerically
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Figure 3
Dependence of the SASFE error (i.e. |FB � FBex| averaged over all �’) (a) as a function of f and (b) as a function of the relative size of FA and F�. (c)
shows the effect of performing the error calculation not only on the average values of FA and F�, but also taking into account that both FA and F� adopt
distributions described by (4). The inset in (c) shows that for F�/FA < 0.4 the distribution-corrected curve can be approximated by a quadratic function.
In (d) the graph represented in blue circles shows how F� atomic varies with the size of random atomic movements of magnitude x (see equation 9 and x2.3
for discussion). The plot shows the case of a set of Bragg planes separated by 2 Å and Fatomic = 1. The plot shows that for small x this function
approximates a straight line (shown in solid black) calculated by (10).



determined curves of h|FB| � |FBex|i versus hF�i for various

combinations of hF�i and f. These fits were optimal for k0 = 0.42

across all values of hF�i and f. The inset in Fig. 3(c) shows the

quality of the fit for the case of FA = 100 and f = 0.5. By

dividing both sides of the equation by hF�i, we then obtain

hFBex � FBi

hF�i
’ 0:42ð1� f Þ

hF�i

hFAi
ð5Þ

as a simple formula to estimate the SASFE error, i.e. the

difference between the proper vector extrapolation and the

SASFE result h|FB| � |FBex|i divided by the size of the struc-

tural change hF�i.

With this estimator in hand, one can now consider how the

ratio hF�i/hFAi varies for different kinds of protein structural

changes and then determine how good or bad an approx-

imation SASFE provides in these cases.

2.2. Magnitude of error case 1: binding of a small molecule

Proteins typically contain several thousand non-H atoms.

Scattering from each of these atoms contributes to every

structure factor in a data set. The amplitude of each atom’s

contribution to any molecular structure factor is determined

by the atom’s atomic number, its occupancy and the B factor.

The phase of the atomic contribution is determined by the

atom’s position in the unit cell.

If, for the sake of this analysis, one assumes that for a given

scattering angle the amplitudes of each atom’s contribution

are the same and that the atoms are distributed randomly

within a crystal structure, then the Argand diagrams for

individual structure factors will take the form of random walks

with step size |Fatomic| and a number of steps equal to the

number of atoms. Since the average distance between the start

and end of a random walk is �0.8 times the square root of the

number of steps times the size of the step, the average struc-

ture factor for a protein with n atoms will be jFproteinj ’

0.8n
1=2
protein|Fatomic|.

In the case where the transition from state A to state B is

simply the binding of a small molecule, jFAj = jFproteinj and

jF�j = jFsmall mol:j ’ 0.8n1:2
small mol:|Fatomic| and the relative

amplitude of the average structure factors is then given by

jF�j

jFAj
¼
jFsmall mol:j

jFproteinj
¼

nsmall mol:

nprotein

 !1=2

’
MWsmall mol:

MWprotein

 !1=2

: ð6Þ

For the case of molecular weights of 30 000 Da for the protein

and 900 Da for the small molecule and a 25% fraction of

activated molecules, one can use (5) to estimate the expected

average SASFE error hFBex � FBi/hF�i as 5.45%. In other

words, the error hFBex � FBi introduced by the SASFE

approximation is rather small when compared with the

magnitude of the structural change hF�i.

2.3. Magnitude of error case 2: subtle structural changes in
large parts of a molecule

Next, let us consider a scenario where the change from state

A to state B involves a movement of existing atoms, i.e. a

conformational change in the protein. In this case, one can

think of a protein as composed of two substructures, one

which stays constant and a second containing nmobile atoms

that move in the A-to-B transition. Using the same rationale

as above, one can then think of the structure-factor contri-

butions of the mobile part to state A and state B as two

separate random walks starting from a common origin. Then,

|F�| is the distance between the endpoints of the two random

walks and

jF�j ’ jFatomicj � 0:8� 21=2n
1=2
mobile: ð7Þ

Since protein conformational changes often involve move-

ments, albeit subtle, of a large fraction of the atoms in the unit

cell, the estimation of jF�j according to (7) would predict

|F�|/|FA| ratios and SASFE errors that are quite large. For

example, a protein structural change in which 20% of all side

chains move would correspond to an |F�|/|FA| ratio of

jF�j

jFAj
¼ 21=2 0:2

1

� �1=2

¼ 0:63:

For this example and the assumption of f = 0.25, (5) then

predicts a very substantial error of (|FB| � |FBex|)/|F�| = 20%.

However, (7) assumes a random reshuffling of atomic

positions for the mobile portion of the molecule. However, in

most protein conformational changes, and certainly in those

that are accommodated by a crystal lattice, the majority of

atoms will undergo only subtle positional adjustments and

such subtle adjustments should lead to smaller F� and

consequently smaller errors. The goal of the following section

is to derive a rough estimate of the relationship between the

amplitude of the atomic displacement and the magnitude of

the error introduced by SASFE within the limit of small

structural changes. The simplified treatment below treats this

effect within the same framework of random walks developed

above and while this treatment makes several simplifying

assumptions, it should suffice for the specific argument

presented here. For a more thorough and extensive treatment

of the relationship between atomic motions and resulting

structure-factor amplitudes, the reader is pointed to the

excellent work on this topic by Read (e.g. Read, 1990).

Above, we arrived at (7) by describing |F�| as a random

walk of 2n steps with a step size of |Fatomic|. This result is

mathematically equivalent to a random walk of n steps with

step size 21/2|Fatomic|, where n is the number of moving atoms

and 21/2|Fatomic| is the average size of the difference scattering

vector |F� atomic| resulting from the movement of an individual

atom. For the case of a structural change that involves only

small atomic motions, the number of steps in this random walk

that makes up |F�| will still be the number of moving atoms,

but we expect the average step size (i.e. the average |F� atomic|)

to be smaller and this decrease in step size reduces the size of

|F�| compared with the case of atomic movements with

random amplitude.

To determine how the size of |F� atomic| depends on the size

of an atom’s movement, let us consider the case of a crystal in

which the A-to-B transition consists of the movement of only a
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single atom by vector x. Further, let us focus on a single

reflection originating from a set of Bragg planes with spacing

d. If the movement vector x has a component p that is

perpendicular to this set of Bragg planes, this movement will

result in the rotation of the atomic scattering vector in the

plane of the Argand diagram. Let the angle of that rotation be

�’. A movement that displaces an atom from one Bragg plane

to the next (i.e. p = d) corresponds to a full 2� rotation.

Smaller motions result in proportionally smaller changes in

�’.

Since we stipulate that x is randomly oriented relative to the

Bragg plane, p (i.e. the component of x that is perpendicular to

the Bragg plane) will be on average |x|/2; therefore,

hj�’ji ¼ 2�
p

d
¼ �
jxj

d
: ð8Þ

We can then use the fact that F� atomic, FA atomic and FB atomic

form a triangle and the law of cosines to calculate |F� atomic| for

a set of Bragg planes with spacing d and a random movement

of an atom by distance |x| as

hjF� atomicji ¼ ðjFatomicj
2
þ jFatomicj

2
� 2jFatomicj

� jFatomicj cosh�’iÞ1=2

¼ jFatomicj½2ð1� cosh�’iÞ�1=2

¼ jFatomicj 2 1� cos �
jxj

d

� �� �� �1=2

ð9Þ

A plot of (9) reveals (Fig. 3d) that for atomic displacements

smaller than half of the Bragg spacing d, h|F� atomic|i is

consistently smaller than the size of 21/2Fatomic resulting from

an atomic movement of random amplitude. The plot further

shows that in the regime of small displacements where 0 < |x| <

d/2, h|F� atomic|i can be approximated by a simple linear

equation

hjF� atomici ¼ jFatomicj
2jxj

d
21=2: ð10Þ

For the case of a protein structural change in which the

majority of atoms move by a distance of less than half the

resolution of the structure, the average length of F� atomic and

with it the average length of F� are linearly proportional to

the distance of the movement, inversely proportional to the

resolution of the reflection and consistently smaller than the

F� for a protein structural change involving atomic motions by

random distances. A compact mathematical expression for the

expected SASFE error that includes the appropriate correc-

tion for the case of small atomic movements is given below in

(13).

If we apply this correction for small atomic displacements to

the case of the protein structural change involving 20% of all

side chains and f = 0.25, which we discussed above, and assume

an average atomic displacement of 0.2 Å, then the SASFE

error for reflections with d spacings of 2 Å would be reduced

to�4%. For reflections with a d spacing of 1.5 Å the predicted

error increases slightly to 5.3%, but in either case the error is

much smaller than the 20% value we had obtained assuming

movements of random amplitude.
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Figure 4
Structural transformations in the bacterial photoreceptor PYP. (a) shows the initial chromophore isomerization reaction. This reaction serves as an
example of a subtle structural change. PYP’s dark-adapted conformation is shown in yellow and the initial photoproduct (I1) is shown in orange. Only
atoms within the chromophore undergo substantial structural displacements. (b) shows a subsequent structural transformation in which the protein and
chromophore rearrange around one another in a more extensive structural change. The dark-adapted conformation (as in a) is again shown in yellow,
while the light-activated state (I2) is shown in grey. (c) shows a ribbon diagram of PYP including a ball-and-stick representation of the chromophore and
a neighbouring arginine residue to provide an overall scale for the size of the two structural transitions relative to the size of the protein.



This resolution-dependence of the SASFE error that occurs

in the cases of subtle structural changes means that higher

resolution reflections are more strongly affected by SASFE

error, so that the extrapolated data set will have a lower

effective resolution than the data sets from which it has been

extrapolated. However, as we will see below, the decrease in

effective resolution of extrapolated maps is usually dominated

not by this effect, but by the experimental errors of |FA| and

|FAB| and the amplification of these errors by the extrapolation

procedure.

To conclude this section, here are the three formulae for the

estimation of the SASFE error for the three scenarios

discussed above. These equations are an approximation of the

error and are most accurate when the square-root term is <0.4.

Small-molecule binding:

hFBex � FBi

hF�i
’ 0:42ð1� f Þ

nsmall mol:

nprotein

 !1=2

: ð11Þ

Random conformational change:

hFBex � FBi

hF�i
’ 0:42ð1� f Þ21=2 nmove

ntotal

� �1=2

: ð12Þ

Subtle conformational changes with atomic movements

smaller than d/2:

hFBex � FBi

hF�i
’ 0:42ð1� f Þ

2jxj21=2

d

nmove

ntotal

� �1=2

: ð13Þ

2.4. Effect of correlation between atomic motions

Throughout this section, the discussion has assumed that

atomic motions are random and uncorrelated. Since many of

the individual atoms in biological macromolecules are cova-

lently linked to their neighbours and must therefore move

together, this assumption of completely random motions

seems unrealistic. Even nonlinked atomic neighbors will,

owing to their close physical packing, show some degree of

correlation in atomic motions. What is the effect of such

correlation on the SASFE error? Staying within the frame-

work developed above, correlation of atomic motions will

transform the random walk of the atomic difference scattering

vectors that make up F� into a biased walk. With an increasing

degree of correlation, the length of this walk will increase from

scaling with n1/2 for the case of uncorrelated motions to scaling

with n for a perfectly correlated linear translation of all atoms.

For structural changes involving a large number of atoms, this

would predict a very substantial increase in F� and potentially

a dramatic failure of the SASFE procedure. However, as we

will see below, the assumption of random movements delivers

adequate estimates of the SASFE error even for examples

where the atomic motions are partially correlated.

Why may the effect of correlation between atomic motions

be less severe than anticipated by the above picture? While a

full treatment of the effect of correlation of atomic motions on

the SASFE error would exceed the frame of this work, two

factors appear to limit the detrimental effect of correlated

atomic motions on the SASFE procedure. Firstly, as

mentioned above, the maximal effect of the correlation is only

observed if the correlation takes the form of a pure translation

of all atoms by an identical displacement vector. From simple

considerations of molecular geometry and molecular packing

such perfect translations would be expected to be quite rare.

For example, the pure translations of a large number of atoms

without compensating motions of other atoms would result in

the generation of a vacuum. Most structural transitions also

involve rotations of molecular groups rather than translations,

so that atomic displacements are not strictly correlated and

may in fact be anticorrelated.

Secondly, the perfectly correlated translation of a

substructure represents a fundamentally different case than

the random-walk example discussed above. Such a perfectly

correlated translation corresponds to the rotation of the

scattering vectors of each of those atoms by exactly the same

angle. The effect is then equivalent to the rotation of the

scattering vector for the entire substructure by this same

angle, but the length of the substructure’s scattering vector

remains the same. In contrast, in the case of random motions,

both the direction and length of the scattering vector for the

substructure of moving atoms changes at random and both

these changes contribute to the overall size of F�.

3. SASFE applied to two examples of protein
conformational change

In the previous section, I examined the source and estimated

the magnitude of the SASFE error from first principles. Here,

two examples of real protein conformational changes taken

from the literature are analyzed. The first example is the initial

chromophore double-bond isomerization reaction of the

bacterial photoreceptor protein PYP. This reaction involves

the movement of just a handful of atoms, most of which move

by just a fraction of an angstrom. The second example is a

subsequent protein conformational change of PYP in which

the chromophore and an arginine side chain move by several

angstroms and a handful of additional side chains move by

fractions of an angstrom. The goal of this section is to examine

whether the error generated by the scalar approximation

limits the usefulness of SASFE in these two real-world

examples.

3.1. Extrapolation procedure and analysis of errors

The starting points for the calculations are two published

structural transformations in the bacterial photoreceptor

protein PYP (Fig. 4). To test the error SASFE generates for

these real-life examples, I used PDB files containing the

coordinates of both the native and activated structural states

and set the occupancy of the two states to 0% and 100%,

respectively. I then calculated data sets representing the native

state |FA| and fully activated state |FB|, respectively. Finally, I

calculated |FAB| corresponding to various f by setting the

occupancies of the activated state from 0.01 to 0.9 and
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adjusting the occupancy of the native-state atoms corre-

spondingly. Structure-factor amplitudes were calculated from

these models using SHELXL (Sheldrick & Schneider, 1997).

From each of these sets of |FAB| values, I then extrapolated

sets of structure-factor amplitudes (|FBex|) for a 100% acti-

vated crystal according to (1). In addition to calculating the

average error hFB � FBexi/hF�i for these structural changes, I

also calculated Rex. Rex is the equivalent of the standard

crystallographic R factor where FBex and FB take the place of

Fobs and Fcalc, respectively. R factors are the most common

method to assess various errors in crystallography and Rex

therefore provides a convenient measure to compare the error

introduced by SASFE with other errors encountered in crys-

tallography.

3.1.1. Example 1: double-bond isomerization in the PYP
photoreceptor, a very small structural change. The first

example is the initial light-driven chromophore isomerization

reaction (Genick et al., 1998) of the photoreceptor protein

PYP (Kyndt et al., 2004). Only 60 of the protein’s 1400 atoms

move in this reaction and the average displacement of these 60

atoms is just 0.42 Å. This reaction is therefore a good example

of a very subtle protein conformational change. Based on the

discussion above, we expect SASFE to perform well for this

example. For reflections with a d spacing of 2.0 Å and f = 0.5,

the average relative SASFE error hFB � FBexi/hF�i computed

from the actual structure-factor-by-structure-factor extra-

polation is 4.4%, which is higher than the estimate (2.6%)

obtained according to (13) but substantially lower than the

error (6.3%) expected for the random movement of the same

number of atoms predicted by (11). I suspect that the slight

underestimation of the error by (13) is the result of one

heavier than average atom (i.e. the S atom linking the chro-

mophore of PYP to the protein) dominating F� and some

correlation of atomic motion. Both factors will give the

Argand diagram of F� the character of a biased random walk

and would increase the average F� and thereby the average

SASFE error. While (13) slightly underestimates the average

relative SASFE error, it very nicely predicts the resolution-

dependence of that error (Fig. 5).

More importantly, the average SASFE error is small,

corresponding to less than 5% of the structure-factor ampli-

tude (F�) of the structural change. Rex, shown as a function of

f in Fig. 6, confirms this impression. Even with f as low as 0.05

Rex is only 3% (i.e. comparable to the Rmerge of a good

macromolecular data set and small relative to a typical Rcryst).

In other words, even when structure-factor extrapolation is

performed from a data set in which only 5% of the molecules

were activated, the error introduced by the scalar approx-

imation remains small relative to typical errors in experi-

mental data (i.e. Rmerge).

For this particular example, the plot of Rex versus f (Fig. 6a)

is noticeably biphasic. For f < 5% Rex increases sharply yet
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Figure 5
Resolution-dependence of the relative SASFE error h|FBex| � |FB|i/hF�i

estimated by (13) (red markers) and observed in an explicit ‘atom-by-
atom’ calculation of the same protein conformational change. In this
example, the structural change is the formation of PYP’s early photocycle
intermediate (I1) (see Fig. 4a) calculated for f = 0.5. The plot shows that
(13) provides a reasonable approximation of the relative SASFE error
(see text for discussion) and also captures the resolution-dependence of
this error.

Figure 6
Extrapolation R factor Rex (see text for definition) and fraction of
|FBex| < 0 plotted as a function of f for (a) a subtle structural change
(dark–I1 conversion in PYP shown in Fig. 4a) and (b) for a more
substantial structural change (dark–I2 conversion shown in Fig. 4b).



remains comparable to the Rmerge of many crystallographic

data sets. Surprisingly, for starting occupancies larger than 5%

and smaller than 90% Rex is nearly independent of the starting

occupancy. Intuitively, one would expect that for increasing

starting occupancies |FBex| should provide an increasingly

better approximation of |FB|. Rex should therefore decrease for

increasing starting occupancies and not stay constant as is

observed in the plot. How can this result be understood?

(1) shows that |FBex| is not restrained to values larger than

zero. For example, for f = 0.5 and |FA| > 2|FAB|, |FBex| < 0. Fig. 2

further shows that |FBex| is always an underestimation of |FB|.

So, for cases where structure-factor extrapolation provides a

particularly bad estimate of |FB|, |FBex| is often smaller than

zero. Since negative structure-factor amplitudes are physically

impossible, I automatically reject |FBex| values smaller than 0

from the extrapolated data set. Effectively, the rejection of

|FBex| < 0 then acts as a filter that rejects |FBex| values that are

particularly bad estimates of |FB|. When plotting the fraction

of negative |FBex| against f (Fig. 6a), one sees that for starting

occupancies >5% the fraction of |FBex| < 0 falls monotonically

from 3% to 0. This in effect means that for smaller f more bad

estimates of |FBex| are rejected, thus raising the average quality

of the remaining |FBex|. As f increases, the same |FBex| values

will still provide a bad estimate of their corresponding |FB|, but

they may now be just above zero and are therefore retained in

the data set and thus degrade the average quality of |FBex|.

Apparently, for higher f, the increasing inclusion of bad |FBex|

values cancels the expected overall improvement in Rex. Thus,

the improvement in the overall quality of the extrapolated

data sets intuitively expected for higher values of f manifests

itself in the data set’s increasing completeness while Rex

remains constant.

Fig. 6(a) shows the Rex calculated for all data extending to

1 Å resolution. As predicted in x2.2, the error introduced by

the extrapolation should depend on the resolution. Specifi-

cally, the error introduced by the extrapolation should be

greater for higher resolution structure factors. A plot of Rex

for the extrapolation with f = 0.5 versus the resolution (Fig. 7a)

confirms this expectation. Rex is almost twice as high for 1 Å

resolution data than it is for 3 Å data, thus mirroring the

results for the resolution-dependence of the average relative

SASFE error shown in Fig. 5.

3.1.2. Example 2: chromophore rearrangement in the PYP
active site, a modest structural change. After the initial light-

activation reaction, PYP undergoes a second structural

transformation. In this reaction, the chromophore and the

protein active site undergo a more substantial rearrangement

involving atomic displacements that exceed 5 Å. A total of 85

atoms move in this structural change and the average distance

of their movement is 0.87 Å. The average relative SASFE

error hFB � FBexi/hF�i predicted by (12) for such a case of

random atomic movements is 7.3%, which closely matches the

observed value of 7.1%. While larger than the error observed

in the case of the more modest structural change in the

previous example, the overall error is still relatively modest.

Fig. 7(b) shows that even for very high resolution structure

factors and structural changes as substantial as these the

SASFE error, as judged by Rex, remains small relative to the

experimental uncertainties (Rmerge) encountered in all but the

highest quality macromolecular data sets. The dependence of

Rex on f for this example (Fig. 6b) shows an essentially linear

decrease in Rex that closely resembles the theoretically

predicted dependence of the average SASFE error on f

(Fig. 3a). The difference in the dependence of Rex on f for the

two examples of structural changes shown here is rather

striking, where the larger structural change resembles the

theoretically expected behaviour much more closely. As

discussed above, I suspect that the anomalous behaviour of

the first example is the result of the structural change being

dominated by the movement of a single S atom. In contrast,

the second example involves sizable movements of a

substantial number of atoms, so that the resulting changes in

structure-factor amplitudes resemble a random structural

change and therefore match the assumptions underlying (11)–

(13) more closely.
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Figure 7
Extrapolation R factor Rex as a function of resolution for (a) a subtle
structural change (dark–I1 conversion in PYP shown in Fig. 4a) and (b)
for a more substantial structural change (dark–I2 conversion shown in
Fig. 4b).



3.2. Effect on electron-density maps

One of the principal uses of extrapolated data sets is in the

calculation of electron-density maps to aid model building.

The top row of electron-density maps in Fig. 8 shows the effect

of the extrapolation error on the appearance of electron-

density maps. The maps in these figures were calculated using

structure-factor amplitudes extrapolated from calculated

structure-factor amplitudes in the manner described above

(x3.1). Phases were calculated from an atomic model from

which the chromophore and the first layer of surrounding

residues were removed. The resulting maps mirror the results

of the Rex calculation. For extrapolations from data sets in

which the occupancy of the activated state is as small as 3%

(i.e. f = 0.03) maps are virtually indistinguishable from the

100% occupancy map (f = 1). Only for the extrapolation from

an initial occupancy of 1% is there any discernable dete-

rioration in map quality.

4. Propagation of experimental errors decreases the
effective resolution of extrapolated data sets

The first-principles calculations and the two real-world

examples above show that SASFE works reliably for a broad

range of resolution, occupancy and structural changes and that

the error introduced by SASFE is small relative to the

experimental uncertainties of structure-factor amplitudes in

macromolecular crystallography experiments. However, so far

all our calculations have assumed the absence of experimental

error in the data. Since all extrapolation procedures have an

inherent tendency to amplify experimental errors, it is

important to analyze the effect of experimental uncertainties

on the quality of the extrapolated structure factors. For the

purposes of this analysis, I will treat the experimental error

[�(FA) and �(FAB)] of the structure factors FA and FAB as

independent of one another so that �(FBex) can be computed

using the basic error-propagation rule

�q ¼ �x

@q

@x

� �2

þ �y

@q

@y

� �2
" #1=2

: ð14Þ

Applied to (1), this computes to

�ðFBexÞ ¼ �ðFAÞ 1�
1

f

� �� �2

þ �ðFABÞ
1

f

� �� �2
( )1=2

: ð15Þ

(15) recapitulates the intuitively expected behaviour of

�(FBex). For large f, �(FBex) approaches �(FAB) [in the

extreme case of f = 1, �(FBex) = �(FAB)], while for small f the

error is approximated by 1/f times the larger of the two

structure-factor errors. Assuming �(FA) = �(FB) = 1, �(FBex)

computes to 2.2 for f = 0.5 and �13.5 for f = 0.1. From this, it

should be clear that FBex extrapolated from data sets in which

the activated species is present only at low occupancy (i.e.

small f ) will quickly become dominated by noise. Also,

F/�(F) = 2I/�(I), so that an n-fold increase in �(F) will lead to

an equivalent n-fold decrease in I/�(I).

Since the average I/�(I) of crystallo-

graphic data sets falls off with resolu-

tion, an increase in �(F) and the

proportional decrease in I/�(I) will

cause the extrapolated data to reach an

I/�(I) ratio of 2, at which crystal-

lographic data sets are customarily

truncated, at a lower resolution. In

other words, both the average quality

and the effective resolution of the

extrapolated data set will be lower,

maybe substantially lower, than those of

the two starting data sets.

It turns out that towards the higher

end of the resolution range of most

macromolecular crystals �(I) is inde-

pendent of resolution, so that the

fall-off of I/�(I) depends largely on the

fall-off of I with resolution. For the

argument outlined below, one can

assume that the shape of a plot of I

versus resolution for a protein crystal

with a given overall B factor will

roughly resemble that of a C atom with

the same B factor. Therefore, a rough

estimate of the effective resolution of an

extrapolated data set can be obtained

from the value of f, the average B factor
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Figure 8
Factors limiting the usefulness of extrapolated maps. OMIT electron-density maps calculated from
extrapolated structure factors (FBex) are shown as a function of f. The top row shows the effect of
the error introduced by the SASFE procedure itself. The FBex values for the maps in this row were
obtained to 1 Å resolution by SASFE using calculated structure factors for FA and FAB based on the
atomic models shown in Fig. 4(a). The bottom row illustrates the effect of the inevitable
amplification of experimental uncertainties during SASFE (see equation 15). The maps are ‘mock
extrapolations’ (i.e. FA = FAB = FB = FBex except for experimental error) based on two experimental
1.2 Å resolution data sets from a fully dark-adapted PYP crystal. Therefore, changes in these
extrapolated maps arise solely from the amplification of experimental error inherent in any
extrapolation procedure. The error introduced by SASFE’s scalar approximation causes virtually no
deterioration in map quality. In comparison, the propagation of the experimental uncertainties
leads to a rapid deterioration of the quality of the extrapolated maps and the apparent resolution.



and the effective resolution of the experimental data sets. For

example, according to (15) for an extrapolation from f = 0.3,

�(FBex) ’ 4�(FA) [assuming �(FA) ’ �(FAB)]. If both the FA

and FAB data sets extend to 2 Å [i.e. I/�(I) = 2 at 2 Å] and the

overall B factor is 20 Å2, we can use the atomic scattering

curve of carbon to predict that the fourfold increase in �(F)

caused by the extrapolation procedure decreases the effective

resolution of the extrapolated data set [i.e. the resolution

where I/�(I) > 2] to �2.6 Å.

The above discussion is presented to provide an order-of-

magnitude estimate of the extrapolation’s effect on resolution

for the purpose of experimental planning or the evaluation of

extrapolations where the experimental data are not accessible.

Given actual FA and FAB data sets, the effective resolution of

the extrapolated data set would be determined by performing

the error-propagation calculation on a structure-factor-by-

structure-factor basis as implemented in the program XTRA

(see x6) while monitoring the I/�(I) ratio of reflections by

resolution shell.

In general, it would be useful to truncate extrapolated maps

to the resolution at which the I/�(I) ratio of the extrapolated

data set falls below 2. Truncation of the extrapolated data set

at this new effective resolution will both reduce noise from

high-resolution structure factors dominated by error and

provide a realistic judgment of whether features observed in a

map are significant or dominated by noise.

Comparison of electron-density maps calculated with real-

life extrapolated data (not shown) with those extrapolated

from calculated F values (Fig. 8, top row) strongly support the

notion of the above analysis and indicate that the practical

limitation for the usefulness of SASFE is not the limitation of

SASFE itself, but the amplification of experimental errors.

To test the effect of experimental uncertainties of structure-

factor amplitudes on electron-density maps independent of

the error introduced by the SASFE procedure, I performed a

series of ‘mock extrapolations’. These extrapolations were

performed for various values of f using a high-quality 1.2 Å

resolution experimental data set for the dark-adapted state of

PYP as the starting point. To generate the two starting data

sets (i.e. FA and FAB), I took the experimentally observed data

set and calculated a ‘sigma-shuffled’ second data set. Briefly,

for each reflection in this sigma-shuffled data set Fshuffled = Fobs

+ [�(F) � r], where r is a Gaussian-deviate random number.

Assuming that the �(F) values represent reasonable estimates

of the true experimental uncertainties of their corresponding

Fobs, the shuffled data set represents a statistically probable

data set one might have observed had one measured a second

data set on the same crystal. In the mock extrapolation I then

used Fobs and Fshuffled as FA and FAB so that (within experi-

mental error) FA = FAB = FBex. Therefore, maps resulting from

this mock-extrapolated data (Fig. 8, bottom row) reflect the

effect of the amplification of experimental uncertainties

independent of the SASFE error.

Comparison of the electron-density maps in Fig. 8 indicates

that the deleterious effect of the propagation of experimental

uncertainties dominates the error introduced by the SASFE

procedure itself. The dependence of the overall quality of

these mock-extrapolated maps closely resembles the trend my

laboratory has observed for many extrapolated maps. Fig. 9

shows how the F/�(F) ratio in these mock-extrapolated data

sets varies with f. Fig. 9(a) indicates that the average F/�(F)

ratio across a range of resolutions is roughly linearly propor-

tional to f. Fig. 9(b) shows how this decrease in F/�(F)

translates into the effective resolution of the data set, i.e. the

resolution, below which F/�(F) > 4 [i.e. I/�(I) > 2]. The results

of this analysis indicate that maps extrapolated from data sets

in which the activated molecular species is present at less then

15–20% are likely to be significantly compromised and will

only be useful in the rare case of truly exceptional starting

data.
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Figure 9
Effect of the propagation of experimental uncertainties on the quality of
extrapolated data sets. (a) shows the F/�(F) ratio for reflections at three
resolutions as a function of f. (b) shows the effect of f on the effective
resolution of the extrapolated data sets [i.e. the resolution below which
F/�(F) > 4]. The graphs are based on a ‘mock extrapolation’ of a high-
quality 1.2 Å resolution data set [see Fig. 8 for an explanation of the
‘mock-extrapolation’ procedures and an OMIT map calculated from the
original data (f = 1)].



5. Other sources of error in extrapolated
electron-density maps

In addition to the errors specific to the scalar approximation of

a vector extrapolation, which are discussed above, extra-

polated electron-density maps are also subject to general

sources of error and bias. One such source of error is phase

bias towards the structure of the unperturbed state of the

molecule. While this error is very small for the two examples

treated here and is likely to remain small for most applications

of SASFE, cases may exist where this error may become

significant. Such cases may occur when protein structural

changes are very large and involve a very large fraction of a

structure’s atoms or when the structural model for the

unperturbed structure is very incomplete or of low quality. For

such cases, it may be important to choose appropriate proce-

dures to reduce model bias. The article by Read (1997)

provides an excellent and authoritative overview of the

problem of phase bias and techniques for mitigating this bias.

Throughout this work, I have assumed that f is known

exactly, but obviously knowledge of f is also subject to error.

Basic error-propagation rules applied to (1) show that �(FBex)

depends on �(f) according to

�ðFBexÞ ¼ �ðf Þ
��jFABj � jFAj

��=f 2

and with |F�| =
��jFABj � jFAj

��=f we then obtain

�ðFBexÞ

jF�j
¼
�ðf Þ

f
: ð16Þ

So, for example, in the case of f = 0.5 	 0.05, the resulting

relative uncertainty in FBex [i.e. �(FBex)/F�] is a tolerable 10%.

Electron-density maps extrapolated with purposefully incor-

rect values of f support this analysis. Maps (not shown) were

extrapolated from simulated data sets representing 40/60,

50/50 or 60/40 ratios of native and activated states of PYP

using f values ranging from 0.4 to 0.6. These maps look very

similar and support identical structural interpretations. Also,

even excessive mis-estimates of f do not simply lead to noisy or

difficult to interpret maps. Instead, an overestimation of f will

simply lead to a map in which state B appears to have elevated

B factors. In the case of a drastic overestimation, state A

remains noticeably in the extrapolated map. Correspondingly,

an underestimation of f will lead to an extrapolated map in

which the activated state is overemphasized, giving the

appearance of very low B factors for the activated species. By

inspecting relative peak heights for individual atoms or side

chains and iteratively adjusting f until the heights of these

electron-density features are the same in the unperturbed and

extrapolated maps, it is actually possible to obtain rather

precise estimates of the occupancy of state B in the partially

activated crystal.

6. XTRA: a software implementation of SASFE

Structure-factor extrapolation according to (1) has been

implemented in the program XTRA. This program takes two

structure-factor files in SHELX.hkl format (i.e. h k l F sigF

R-free_flag) and generates an extrapolated data set containing

the extrapolated structure-factor amplitudes. The �(FBex) are

calculated according to (15). The program rejects structure

factors with amplitudes smaller than zero and displays the

number of reflections rejected by this criterion at the end of

the output. XTRA also generates a table of F/�(F) by reso-

lution shell for the two input data sets and the extrapolated

data set.

When running XTRA, it is essential that the two input data

sets (FA and FAB) have previously been scaled to one another

and that the scaling routine has corrected differences in the

overall B factor between the two data sets. Failure to do so will

make the extrapolation results meaningless. Further, estima-

tion of the extrapolated data set relies on the correct esti-

mation of �(F) during data merging. Finally, since the

extrapolation procedure leads to a consistent underestimation

of |FBex| (see x2), the SASFE procedure slightly alters the

overall scale of the data set. Therefore, if subsequent

computations assume the extrapolated data to be on an

absolute scale, it will be necessary to rescale the extrapolated

data set, even when both input data sets were initially on the

absolute scale.

The program is available from the author as a precompiled

standalone command-line application for Linux on X86

architecture or as source code in C.

7. Conclusions

SASFE, the scalar approximation to structure-factor extra-

polation, is commonly used in crystallographic experiments

aimed at determining the response of a protein structure to a

physical or chemical stimulus. In these experiments, SASFE

allows the estimation of the structure-factor amplitudes for a

crystal in the fully activated state from experimentally

observed structure-factor amplitudes of a non-activated and a

partially activated crystal. Both first-principles-based analysis

of the error introduced by SASFE and the simulation of

SASFE methods for two examples of actual in-crystal acti-

vation experiments show that SASFE is surprisingly reliable

and robust. As a result, the usefulness of SASFE is not limited

by SASFE-specific errors, but by the amplification of experi-

mental errors inherent to all extrapolation procedures. This

amplification of experimental errors effectively reduces the

resolution of the extrapolated data set relative to that of the

two experimentally observed data sets.

The author thanks Pierre Damien Coureux for collecting

experimental data and Bruce Foxman, Nikolaus Grigorieff

and Jane Kondev for helpful discussions.
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